首页> 外文OA文献 >Genetic and Biochemical Analysis of High Iron Toxicity in Yeast: IRON TOXICITY IS DUE TO THE ACCUMULATION OF CYTOSOLIC IRON AND OCCURS UNDER BOTH AEROBIC AND ANAEROBIC CONDITIONS*
【2h】

Genetic and Biochemical Analysis of High Iron Toxicity in Yeast: IRON TOXICITY IS DUE TO THE ACCUMULATION OF CYTOSOLIC IRON AND OCCURS UNDER BOTH AEROBIC AND ANAEROBIC CONDITIONS*

机译:酵母中高铁毒性的遗传和生化分析:在有氧和厌氧条件下,铁的毒性是由于细胞液中铁和累积的铁积累引起的*

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity.
机译:酵母中的铁存储需要液泡铁转运蛋白Ccc1的活性。具有完整CCC1的酵母对铁毒性有抵抗力,但CCC1的缺失使酵母易受铁毒性的影响。我们使用遗传和生化分析来鉴定Δccc1细胞中高铁毒性的抑制剂,以探究高铁毒性的机制。在需氧生长的Δccc1细胞中被鉴定为高铁毒性抑制剂的所有基因都编码细胞器铁转运蛋白,包括线粒体铁转运蛋白MRS3,MRS4和RIM2。 MRS3的过表达通过通过线粒体铁积累减少胞质铁来抑制高铁毒性。在厌氧条件下,Δccc1细胞仍然对高铁毒性敏感,但是MRS3的过表达不能抑制铁毒性,也不会导致线粒体铁积累。我们得出结论,Mrs3 / Mrs4可以在有氧条件下隔离线粒体中的铁,但在无氧条件下不能隔离。我们表明,在有氧和无氧条件下,Δccc1细胞中的铁毒性都发生了。芯片分析显示在厌氧条件下没有氧化损伤的迹象,这表明铁的毒性可能不仅仅由于氧化损伤。在有氧和无氧条件下,编码过氧化物酶的TSA1的缺失会加剧Δccc1细胞中的铁毒性,表明Tsa1在铁毒性中具有独特的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号